login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346316
Composite numbers with primitive root 6.
2
121, 169, 289, 1331, 1681, 2197, 3481, 3721, 4913, 6241, 6889, 7921, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 22801, 24649, 28561, 32041, 39601, 49729, 51529, 52441, 54289, 63001, 66049, 68921, 73441, 76729, 83521, 120409, 134689, 139129, 157609
OFFSET
1,1
COMMENTS
An alternative description: Numbers k such that 1/k in base 6 generates a repeating fraction with period phi(n) and n/2 < phi(n) < n-1.
For example, in base 6, 1/121 has repeat length 110 = phi(121) which is > 121/2 but less than 121-1.
LINKS
FORMULA
A167794 INTERSECT A002808.
MAPLE
isA033948 := proc(n)
if n in {1, 2, 4} then
true;
elif type(n, 'odd') and nops(numtheory[factorset](n)) = 1 then
true;
elif type(n, 'even') and type(n/2, 'odd') and nops(numtheory[factorset](n/2)) = 1 then
true;
else
false;
end if;
end proc:
isA167794 := proc(n)
if not isA033948(n) or n = 1 then
false;
elif numtheory[order](6, n) = numtheory[phi](n) then
true;
else
false;
end if;
end proc:
A346316 := proc(n)
option remember;
local a;
if n = 1 then
121;
else
for a from procname(n-1)+1 do
if not isprime(a) and isA167794(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A346316(n), n=1..20) ; # R. J. Mathar, Sep 15 2021
MATHEMATICA
Select[Range[160000], CompositeQ[#] && PrimitiveRoot[#, 6] == 6 &] (* Amiram Eldar, Jul 13 2021 *)
PROG
(PARI) isok(m) = (m>1) && !isprime(m) && (gcd(m, 6)==1) && (znorder(Mod(6, m))==eulerphi(m)); \\ Michel Marcus, Aug 12 2021
CROSSREFS
Subsequence of A244623.
Subsequence of A167794.
Cf. A108989 (for base 2), A158248 (for base 10).
Cf. A157502.
Sequence in context: A037266 A352221 A240775 * A284643 A074730 A268519
KEYWORD
nonn
AUTHOR
Robert Hutchins, Jul 13 2021
STATUS
approved