The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346273 Number of compositions of graph C_3 X P_n. 1
 5, 114, 2712, 64518, 1534872, 36514338, 868669752, 20665502358, 491628707832, 11695761476178, 278240131889112, 6619284357957798, 157471623931541592, 3746222552567209218, 89121983141955313272, 2120196482644091472438, 50439105667748418772152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Liam Buttitta, On the Number of Compositions of Km X Pn, Journal of Integer Sequences, Vol. 25 (2022), Article 22.4.1. J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart. 42 (2004), 222-230. Index entries for linear recurrences with constant coefficients, signature (24,-5). FORMULA a(n) = 24*a(n-1) - 5*a(n-2) for n >= 4. G.f.: x*(5 - 6*x + x^2)/(1 - 24*x + 5*x^2). For n>1, a(n) = z * M^(n-1) * z^T, where z is the 1 X 5 row vector [1,1,1,1,1], z^T is its transpose (a 5 X 1 column vector of 1's), and M is the 5 X 5 matrix    [[8, 6, 6, 6, 4],     [6, 4, 5, 5, 3],     [6, 5, 4, 5, 3],     [6, 5, 5, 4, 3],     [4, 3, 3, 3, 2]]. EXAMPLE For n=1 the a(1)=5 solutions are given here, where the first picture has all three vertices in the same partition (called A), the next three pictures have two vertices in the partition A and one in the partition B, and the last picture has all three vertices in their own partitions.     A        A      B      A        A    / \      / \    / \    / \      / \   A___A    B___A  A___A  A___B    B___C MAPLE a:= n-> ceil((<<0|1>, <-5|24>>^n. <<6/25, 24/5>>)[1\$2]): seq(a(n), n=1..21);  # Alois P. Heinz, Jul 14 2021 MATHEMATICA M = {{8, 6, 6, 6, 4}, {6, 4, 5, 5, 3}, {6, 5, 4, 5, 3}, {6, 5, 5, 4,     3}, {4, 3, 3, 3, 2}}; w = {1, 1, 1, 1, 1}; Join[{5}, Table[Transpose[w] . MatrixPower[M, n, w], {n, 1, 40}]] CROSSREFS Cf. A108808. Sequence in context: A053712 A325914 A091026 * A216342 A207999 A223057 Adjacent sequences:  A346270 A346271 A346272 * A346274 A346275 A346276 KEYWORD nonn,easy AUTHOR Liam Buttitta and Greg Dresden, Jul 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 00:01 EDT 2022. Contains 356180 sequences. (Running on oeis4.)