login
A346250
Sum of -A252748 and its Dirichlet inverse.
7
2, 0, 0, 1, 0, 2, 0, -3, 1, 6, 0, -11, 0, 6, 6, -17, 0, -23, 0, -17, 6, 18, 0, -39, 9, 18, -15, -25, 0, -48, 0, -51, 18, 30, 18, -49, 0, 30, 18, -77, 0, -72, 0, -35, -61, 34, 0, -85, 9, -31, 30, -43, 0, -123, 54, -97, 30, 54, 0, -117, 0, 50, -77, -89, 54, -96, 0, -53, 34, -104, 0, -19, 0, 66, -55, -61, 54, -120, 0
OFFSET
1,1
FORMULA
a(n) = A346248(n) - A252748(n).
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
A252748(n) = (A003961(n) - (2*n));
v346248 = DirInverseCorrect(vector(up_to, n, -A252748(n)));
A346248(n) = v346248[n];
A346250(n) = (A346248(n)-A252748(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 19 2021
STATUS
approved