login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = A108951(A346097(n)), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)).
6

%I #7 Jul 08 2021 14:22:47

%S 1,2,6,4,30,36,210,2,6,900,2310,1296,30030,44100,729000000,4,510510,

%T 36,9699690,810000,85766121000000,5336100,223092870,216,39690000,

%U 901800900,1260,1944810000,6469693230,24300000,200560490130,60,151939915084881000000,260620460100,3782285936100000000,1296,7420738134810,94083986096100

%N a(n) = A108951(A346097(n)), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)).

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(n) = A108951(A346097(n)) = A108951(A319627(A324886(n))).

%F a(n) = A346106(n) / A324886(n).

%o (PARI)

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A319627(n) = (A064989(n) / gcd(n, A064989(n)));

%o A346097(n) = A319627(A324886(n));

%o A346107(n) = A108951(A346097(n)); \\ Rest of program given in A324886.

%Y Cf. A064989, A108951, A276086, A319627, A324886, A346097, A346106, A346109.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jul 08 2021