login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A345963
a(n) = (q^2-q+1)/3 where q = 2^(2*n+1) = A004171(n).
0
1, 19, 331, 5419, 87211, 1397419, 22366891, 357903019, 5726579371, 91625794219, 1466014804651, 23456245263019, 375299957762731, 6004799458421419, 96076791871613611, 1537228672093301419, 24595658762082757291, 393530540227683855019, 6296488643780380633771, 100743818301035845954219
OFFSET
0,2
LINKS
Peter Cameron, A little problem, May 31 2021.
Volkan Yildiz, Some divisibility properties of Jacobsthal numbers, arXiv:2212.08814 [math.CO], 2022.
FORMULA
a(n) = A002061(A004171(n))/3.
a(n) = (A060869(n) + 1)/4. - Hugo Pfoertner, Jun 30 2021
MAPLE
a:= n-> (q-> (q^2-q+1)/3)(2^(2*n+1)):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 30 2021
MATHEMATICA
Table[(2^(4*n + 2) - 2^(2*n + 1) + 1)/3, {n, 0, 19}] (* Amiram Eldar, Jun 30 2021 *)
PROG
(PARI) a(n) = my(q=2^(2*n+1)); (q^2-q+1)/3;
CROSSREFS
Sequence in context: A014900 A121324 A093973 * A202043 A142549 A049629
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 30 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 02:11 EDT 2024. Contains 376015 sequences. (Running on oeis4.)