Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 04 2021 22:05:27
%S 1,1,1,1,1,2,1,2,1,2,1,2,1,2,2,1,1,2,1,3,2,2,1,4,1,2,1,3,1,4,1,1,2,2,
%T 2,3,1,2,2,4,1,4,1,3,2,2,1,2,1,2,2,3,1,2,2,4,2,2,1,6,1,2,3,2,2,4,1,3,
%U 2,4,1,4,1,2,2,3,2,4,1,2,2,2,1,6,2,2,2,4,1,4,2,3,2,2,2,2,1,2,3,3,1,4,1,4,4
%N Number of divisors d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that n divides k!.
%H Antti Karttunen, <a href="/A345935/b345935.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F a(n) = Sum_{d|n} [A002034(d) = A002034(n)], where [ ] is the Iverson bracket.
%F a(n) = A000005(n) - A345936(n).
%F a(n) <= A345934(n).
%e 36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A002034 is applied to them, one obtains values [1, 2, 3, 4, 3, 6, 4, 6, 6], thus there are three divisors that obtain the maximal value 6 obtained at 36 itself, therefore a(36) = 3.
%t a[n_]:=(m=1;While[Mod[m!,n]!=0,m++];m);Table[Length@Select[Divisors@k,a@#==a@k&],{k,100}] (* _Giorgos Kalogeropoulos_, Jul 03 2021 *)
%o (PARI)
%o A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
%o A345935(n) = { my(x=A002034(n)); sumdiv(n,d,A002034(d)==x); };
%Y Cf. A000005, A002034, A345934, A345936, A345944 (positions of 1's), A345945 (of terms > 1), A345950.
%Y Cf. also A344590.
%K nonn
%O 1,6
%A _Antti Karttunen_, Jul 02 2021