OFFSET
1,1
COMMENTS
Differs from A345545 at term 9 because 624 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 = 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3.
Likely finite.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..127
EXAMPLE
498 is a term because 498 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Jun 26 2021
STATUS
approved