login
A345797
Numbers that are the sum of nine cubes in exactly five ways.
7
409, 413, 428, 435, 439, 446, 465, 479, 491, 502, 512, 517, 526, 531, 533, 535, 538, 540, 559, 561, 563, 566, 568, 570, 576, 579, 580, 587, 594, 600, 601, 603, 613, 615, 617, 620, 622, 627, 632, 633, 635, 638, 646, 651, 653, 664, 665, 668, 670, 675, 680, 683
OFFSET
1,1
COMMENTS
Differs from A345544 at term 8 because 472 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3.
Likely finite.
LINKS
EXAMPLE
413 is a term because 413 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved