The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345614 Numbers that are the sum of eight fifth powers in six or more ways. 7
1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4104553, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4915506, 4970823, 5003645, 5112274, 5259111, 5449985 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
2593811 is a term because 2593811 = 1^5 + 1^5 + 4^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A242824 A204288 A321040 * A346331 A345624 A345625
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:43 EDT 2024. Contains 372666 sequences. (Running on oeis4.)