The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345566 Numbers that are the sum of six fourth powers in nine or more ways. 8
88595, 122915, 132546, 134931, 144835, 146450, 151556, 161475, 162355, 162755, 170275, 171555, 171795, 172036, 172835, 173075, 177380, 177716, 180770, 183540, 183620, 184835, 185315, 185555, 187700, 187715, 190100, 190211, 193635, 195380, 195780, 196435 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A237908 A233937 A022201 * A345821 A031857 A346998
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 11:57 EDT 2024. Contains 372763 sequences. (Running on oeis4.)