login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345465
a(n) = Sum_{d|n} (d!)^d.
4
1, 5, 217, 331781, 24883200001, 139314069504000221, 82606411253903523840000001, 6984964247141514123629140377600331781, 109110688415571316480344899355894085582848000000217, 395940866122425193243875570782668457763038822400000000024883200005
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k >= 1} (k! * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p!)^p.
MATHEMATICA
Total/@Table[((Divisors[n])!)^Divisors[n], {n, 10}] (* Harvey P. Dale, Apr 24 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, d!^d);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k!*x)^k/(1-x^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 10 2021
STATUS
approved