login
A345451
Sum of the unitary divisors of n whose square does not divide n.
1
0, 2, 3, 4, 5, 11, 7, 8, 9, 17, 11, 19, 13, 23, 23, 16, 17, 29, 19, 29, 31, 35, 23, 35, 25, 41, 27, 39, 29, 71, 31, 32, 47, 53, 47, 49, 37, 59, 55, 53, 41, 95, 43, 59, 59, 71, 47, 67, 49, 77, 71, 69, 53, 83, 71, 71, 79, 89, 59, 119, 61, 95, 79, 64, 83, 143, 67, 89, 95, 143, 71
OFFSET
1,2
COMMENTS
a(p) = p for primes p.
FORMULA
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * (ceiling(n/d^2)-floor(n/d^2)).
a(n) = A034448(n)-1. - Chai Wah Wu, Jun 20 2021
PROG
(Python 3.8+)
from math import prod
from sympy import factorint
def A345451(n): return prod(p**e+1 for p, e in factorint(n).items())-1 # Chai Wah Wu, Jun 20 2021
CROSSREFS
Cf. A034448.
Sequence in context: A247233 A329906 A325651 * A345320 A160000 A245448
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 19 2021
STATUS
approved