login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345423
For 1<=x<=n, 1<=y<=n, with gcd(x,y)=1, write 1 = gcd(x,y) = u*x+v*y with u,v minimal; a(n) = sum of the values of u.
3
0, 1, 2, 3, 4, 5, 5, 7, 6, 6, 7, 9, 2, 7, 5, 3, 5, 2, -7, 1, -9, -8, -4, 4, -25, -25, -26, -40, -31, -19, -31, -17, -53, -65, -57, -71, -92, -71, -79, -91, -95, -85, -138, -88, -100, -115, -109, -125, -195, -215, -207, -191, -210, -213, -227, -199, -193, -233, -222, -238
OFFSET
1,3
COMMENTS
Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when x=y.
MAPLE
mygcd:=proc(a, b) local d, s, t; d := igcdex(a, b, `s`, `t`); [a, b, d, s, t]; end;
ansu:=[]; ansv:=[]; ansb:=[];
for N from 1 to 80 do
tu:=0; tv:=0; tb:=0;
for x from 1 to N do
for y from 1 to N do
if igcd(x, y)=1 then
tu:=tu + mygcd(x, y)[4];
tv:=tv + mygcd(x, y)[5];
tb:=tb + mygcd(x, y)[4] + mygcd(x, y)[5];
fi;
od: od:
ansu:=[op(ansu), tu];
ansv:=[op(ansv), tv];
ansb:=[op(ansb), tb];
od:
ansu; # the present sequence
ansv; # A345424
ansb; # A345425
# for A345426, A345427, A345428, omit the "igcd(x, y)=1" test
MATHEMATICA
T[x_, y_] := T[x, y] = Module[{u, v}, MinimalBy[{u, v} /. Solve[u^2 + v^2 <= x^2 + y^2 && u*x + v*y == 1, {u, v}, Integers], #.# &]];
a[n_] := a[n] = Sum[If[GCD[x, y] == 1, T[x, y][[1, 1]], 0], {x, 1, n}, {y, 1, n}];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 28 2023 *)
PROG
(Python)
from sympy.core.numbers import igcdex
def A345423(n): return sum(u for u, v, w in (igcdex(x, y) for x in range(1, n+1) for y in range(1, n+1)) if w == 1) # Chai Wah Wu, Aug 21 2021
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 22 2021
STATUS
approved