login
A345413
Decimal expansion of exp(gamma + M)*(G - 7*zeta(3)/(4*Pi))/4, where gamma is Euler's constant (A001620), M is Mertens's constant (A077761) and G is Catalan's constant (A006752).
0
1, 4, 2, 4, 8, 6, 7, 6, 7, 5, 6, 2, 9, 7, 6, 6, 7, 7, 6, 6, 0, 1, 3, 1, 1, 9, 0, 3, 8, 5, 1, 6, 4, 8, 5, 8, 2, 5, 6, 9, 9, 0, 6, 5, 0, 1, 9, 5, 6, 1, 7, 1, 5, 4, 1, 8, 7, 3, 9, 8, 3, 8, 3, 4, 1, 3, 2, 1, 8, 0, 8, 4, 4, 0, 3, 7, 1, 5, 8, 3, 2, 8, 8, 1, 9, 5, 4
OFFSET
0,2
COMMENTS
This constant is notable for being the asymptotic limit in a formula derived by Sinha and Wolf (2010) which "brings together the elements from nine different topics of number theory" (see the Formula section).
LINKS
Nilotpal Kanti Sinha and Marek Wolf, On a unified theory of numbers, arXiv:1009.4810 [math.NT], 2010-2011. See section 8, p. 11, eq. 37.
FORMULA
Equals lim_{n->oo} (1/log(n)^2) * Sum_{k=1..n} (1/gamma_k) * (1/k + 1/prime(k)) * (arctan(gamma_k/gamma_n))^2 * exp(H(k) + Sum_{i=1..k} 1/prime(i))), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma_k is the imaginary part of the k-th nontrivial zero of the Riemann zeta function.
EXAMPLE
0.14248676756297667766013119038516485825699065019561...
MATHEMATICA
M = EulerGamma - NSum[PrimeZetaP[k]/k, {k, 2, Infinity}, WorkingPrecision -> 300, NSumTerms -> 300]; RealDigits[Exp[EulerGamma + M]*(Catalan - 7*Zeta[3]/(4*Pi))/4, 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jun 18 2021
STATUS
approved