|
|
A345339
|
|
a(n) = 18*n + 20.
|
|
0
|
|
|
20, 38, 56, 74, 92, 110, 128, 146, 164, 182, 200, 218, 236, 254, 272, 290, 308, 326, 344, 362, 380, 398, 416, 434, 452, 470, 488, 506, 524, 542, 560, 578, 596, 614, 632, 650, 668, 686, 704, 722, 740, 758, 776, 794, 812, 830, 848, 866, 884, 902, 920, 938, 956, 974, 992, 1010
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The largest even integer which cannot be written as the sum of 2n composite odd integers, for n >= 1, is 18*n+20, proved by the Shippensburg University Mathematical Problem Solving Group (see Links).
|
|
LINKS
|
Ronald E. Ruemmler, Problem 1328, Mathematics Magazine, Vol. 62, No. 4 (October 1989), p. 274; Sums of Composite Odd Numbers, Solution to problem 1328 by Garrett R. Vargas, ibid., Vol. 63, No. 4 (October 1990), pp. 276-277.
|
|
FORMULA
|
a(n) = 18*n + 20.
|
|
EXAMPLE
|
For n = 1, a(1) = A118081(14) = 38.
|
|
MATHEMATICA
|
Table[18*n + 20, {n, 0, 55}] (* Amiram Eldar, Jun 14 2021 *)
LinearRecurrence[{2, -1}, {20, 38}, 60] (* Harvey P. Dale, Jan 15 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|