OFFSET
1,4
COMMENTS
a(p) = Sum_{p|p} (p/p)^gcd(p,p/p) = 1^1 = 1 for primes p.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
EXAMPLE
a(10) = Sum_{p|10} (10/p)^gcd(p,10/p) = 5^gcd(2,5) + 2^gcd(5,2) = 5^1 + 2^1 = 7.
MATHEMATICA
Table[Sum[(n/k)^GCD[k, n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
PROG
(PARI) A345312(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, (n/f[i, 1])^gcd(n/f[i, 1], f[i, 1]))); \\ Antti Karttunen, Jan 22 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 13 2021
STATUS
approved