login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345107
a(n) = Sum_{k=1..n} (-k)^(n - floor(n/k)).
2
1, -1, 14, -86, 955, -11851, 183800, -3273914, 67643293, -1571615577, 40838683608, -1170198385960, 36717193651461, -1251181160936837, 46033142685018824, -1818354391006060750, 76762360864947676457, -3448789505696369210193
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=1} (-k)^(k-1)*x^k * (1 - (-k*x)^k)/((1 - (-k)^(k-1)*x^k) * (1 + k*x)).
MATHEMATICA
a[n_] := Sum[(-k)^(n - Floor[n/k]), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 08 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-k)^(n-n\k));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (-k)^(k-1)*x^k*(1-(-k*x)^k)/((1-(-k)^(k-1)*x^k)*(1+k*x))))
CROSSREFS
Sequence in context: A125324 A126482 A206614 * A321941 A116343 A259473
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 08 2021
STATUS
approved