login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345080
First occurrence of n in A345079, or -1 if n does not occur in A345079.
2
2, 4, 1, 105, 330, 385, 770, 1365, 1995, 1785, 3570, 5610, 2805, 6279, 3135, 14245, 13209, 6545, 7917, 12903, 17017, 21385, 22715, 11165, 22015, 21505, 29393, 20930, 10465, 16555, 31395, 19285, 38570, 37961, 35581, 52535, 35105, 75361, 18445, 35245, 23205, 46345
OFFSET
0,1
COMMENTS
Records: 2, 4, 105, 330, 385, 770, 1365, 1995, 3570, 5610, 6279, 14245, 17017, 21385, 22715, 29393, 31395, 38570, 52535, 75361, 84630, 115710, ...
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..72
EXAMPLE
A345079(105) = 3. For all k < 105, -1, 0 and 1 are the only possible coefficients in the expansion of the k-th cyclotomic polynomial, so A345079(k) <= 2. Therefore, a(3) = 105.
MATHEMATICA
f[n_] := Block[{a = Union[ CoefficientList[ Cyclotomic[n, x], x]]}, a[[-1]] - a[[1]]]; t[_] := 0; k = 1; While[k < 100001, b = f@k; If[t[b] == 0, t[b] = k]; k++]; t@# & /@ Range[0, 115]
PROG
(PARI) a(n) = my(k=1); while(A345079(k)!=n, k++); k \\ See program for A345079, assuming every number occurs in A345079
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved