login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(n, A344875(n)), where A344875 is multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e -1 for odd primes p.
3

%I #10 Jun 30 2021 19:48:05

%S 1,1,1,1,1,6,1,1,1,2,1,2,1,2,1,1,1,6,1,4,3,2,1,6,1,2,1,14,1,6,1,1,1,2,

%T 1,4,1,2,3,20,1,6,1,2,1,2,1,2,1,2,1,4,1,6,5,2,3,2,1,4,1,2,3,1,1,6,1,4,

%U 1,2,1,24,1,2,3,2,1,6,1,4,1,2,1,84,1,2,1,2,1,6,1,2,3,2,1,6,1,2,1,4,1,6,1,4,3

%N a(n) = gcd(n, A344875(n)), where A344875 is multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e -1 for odd primes p.

%H Antti Karttunen, <a href="/A344877/b344877.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A344877/a344877.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%t f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Jun 03 2021 *)

%o (PARI)

%o A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };

%o A344877(n) = gcd(n, A344875(n));

%Y Cf. A344875.

%Y Cf. also A323409.

%K nonn

%O 1,6

%A _Antti Karttunen_, Jun 03 2021