login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344523
a(n) = Sum_{1 <= i, j, k, l <= n} gcd(i,j,k,l).
6
1, 17, 84, 276, 649, 1417, 2528, 4432, 7033, 10905, 15556, 22836, 30673, 41729, 54944, 71968, 89969, 115457, 140820, 175444, 212537, 257113, 302720, 366160, 426505, 500873, 580676, 677108, 769761, 895377, 1008928, 1153120, 1300417, 1469073, 1640020, 1860340, 2054921
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^4.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^4.
a(n) ~ 90 * zeta(3) * n^4 / Pi^4. - Vaclav Kotesovec, May 23 2021
MATHEMATICA
a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
PROG
(PARI) a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, gcd([i, j, k, l])))));
(PARI) a(n) = sum(k=1, n, eulerphi(k)*(n\k)^4);
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^4)/(1-x))
CROSSREFS
Column k=4 of A344479.
Sequence in context: A197346 A213436 A239667 * A156968 A212487 A288420
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 22 2021
STATUS
approved