Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 07 2022 19:34:41
%S 1,3,1,45,9,1,1782,207,18,1,142164,10260,585,30,1,19943830,953424,
%T 35235,1305,45,1,4507660380,151369792,3731049,93555,2520,63,1,
%U 1540185346560,38205961380,657600076,11122209,211680,4410,84,1,757560406751120,14455803484728
%N Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
%C Derived by interpreting A001500 as the number of labeled 3-regular digraphs (in-degree and out-degree at each node=3), without regarding the trace (which means loops are allowed) and no limit on the individual entries (so multiple arcs in the same direction between nodes are allowed).
%C Then the formula of A123543 (Gilbert's article) allows these values to be refined by the number of weakly connected components.
%H E. N. Gilbert, <a href="https://doi.org/10.4153/CJM-1956-046-2">Enumeration of labelled graphs</a>, Can. J. Math. 8 (1956) 405-411.
%F T(n,n) = 1. [n nodes, each with a triple loop].
%F T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
%F T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.
%e Triangle begins:
%e 1;
%e 3, 1;
%e 45, 9, 1;
%e 1782, 207, 18, 1;
%e 142164, 10260, 585, 30, 1;
%e 19943830, 953424, 35235, 1305, 45, 1;
%e 4507660380, 151369792, 3731049, 93555, 2520, 63, 1;
%e 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
%e ...
%p # Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
%p # triangle of labeled graphs with k weakly connected components.
%p lblNonc := proc(L::list)
%p local k,x,g,Lkx,t,Lkxt,n,c ;
%p add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
%p log(1+%) ; # formula from A123543
%p g := taylor(%,x=0,nops(L)) ;
%p seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
%p print(lc) ;# first column
%p Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
%p Lkxt := exp(t*%) ;
%p for n from 0 to nops(L)-1 do
%p tmp := coeftayl(Lkxt,x=0,n) ;
%p for c from 0 to n do
%p printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
%p end do:
%p printf("\n") ;
%p end do:
%p end proc:
%p L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
%p lblNonc(L) ;
%Y Cf. A307804 (2-regular analog), A001500 (row sums), A045943 (subdiagonal).
%K nonn,tabl
%O 1,2
%A _R. J. Mathar_, May 16 2021