OFFSET
1,2
COMMENTS
Derived by interpreting A001500 as the number of labeled 3-regular digraphs (in-degree and out-degree at each node=3), without regarding the trace (which means loops are allowed) and no limit on the individual entries (so multiple arcs in the same direction between nodes are allowed).
Then the formula of A123543 (Gilbert's article) allows these values to be refined by the number of weakly connected components.
LINKS
E. N. Gilbert, Enumeration of labelled graphs, Can. J. Math. 8 (1956) 405-411.
FORMULA
T(n,n) = 1. [n nodes, each with a triple loop].
T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.
EXAMPLE
Triangle begins:
1;
3, 1;
45, 9, 1;
1782, 207, 18, 1;
142164, 10260, 585, 30, 1;
19943830, 953424, 35235, 1305, 45, 1;
4507660380, 151369792, 3731049, 93555, 2520, 63, 1;
1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
MAPLE
# Given a list L[1], L[2], ... for labeled not necessarily connected graphs, generate
# triangle of labeled graphs with k weakly connected components.
lblNonc := proc(L::list)
local k, x, g, Lkx, t, Lkxt, n, c ;
add ( op(k, L)*x^k/k!, k=1..nops(L)) ;
log(1+%) ; # formula from A123543
g := taylor(%, x=0, nops(L)) ;
seq( coeftayl(g, x=0, i)*i!, i=1..nops(L)) ;
print(lc) ; # first column
Lkx := add ( coeftayl(g, x=0, i)*x^i, i=1..nops(L)) ;
Lkxt := exp(t*%) ;
for n from 0 to nops(L)-1 do
tmp := coeftayl(Lkxt, x=0, n) ;
for c from 0 to n do
printf("%a ", coeftayl(tmp, t=0, c)*n!) ;
end do:
printf("\n") ;
end do:
end proc:
L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
lblNonc(L) ;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 16 2021
STATUS
approved