%I #15 May 19 2021 02:13:56
%S 1,2,3,5,6,7,10,13,14,15,17,19,21,23,26,29,30,34,35,37,38,39,42,43,46,
%T 47,51,53,57,58,59,65,67,69,70,73,74,78,79,83,85,86,87,89,91,94,95,97,
%U 102,103,105,106,107,109,111,113,114,115,118,119,127,129,130,133,134,137,138,139,141,145
%N Numbers k such that A205791(k) = k+1.
%H Robert Israel, <a href="/A344308/b344308.txt">Table of n, a(n) for n = 1..1258</a>
%e a(6) = 7 is a term because A205791(7) = 8.
%p N:= 200: # for terms <= N
%p V:= Vector(N):
%p count:= 0:
%p for k from 1 while count < N do
%p for j from 1 to k-1 while count < N do
%p Q:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(k^5-j^5));
%p if Q <> {} then
%p newcount:= nops(Q);
%p count:= count + newcount;
%p V[convert(Q, list)]:= k;
%p fi
%p od od:
%p select(t -> V[t] = t+1, [$1..N]);
%t Select[Range@200,(k=1;While[FreeQ[Mod[Table[k^5-j^5,{j,k-1}],#],0],k++];k)==#+1&] (* _Giorgos Kalogeropoulos_, May 14 2021 *)
%Y Cf. A205791.
%Y Subset of A005117.
%K nonn
%O 1,2
%A _Robert Israel_, May 14 2021