login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A205791(k) = k+1.
2

%I #15 May 19 2021 02:13:56

%S 1,2,3,5,6,7,10,13,14,15,17,19,21,23,26,29,30,34,35,37,38,39,42,43,46,

%T 47,51,53,57,58,59,65,67,69,70,73,74,78,79,83,85,86,87,89,91,94,95,97,

%U 102,103,105,106,107,109,111,113,114,115,118,119,127,129,130,133,134,137,138,139,141,145

%N Numbers k such that A205791(k) = k+1.

%H Robert Israel, <a href="/A344308/b344308.txt">Table of n, a(n) for n = 1..1258</a>

%e a(6) = 7 is a term because A205791(7) = 8.

%p N:= 200: # for terms <= N

%p V:= Vector(N):

%p count:= 0:

%p for k from 1 while count < N do

%p for j from 1 to k-1 while count < N do

%p Q:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(k^5-j^5));

%p if Q <> {} then

%p newcount:= nops(Q);

%p count:= count + newcount;

%p V[convert(Q, list)]:= k;

%p fi

%p od od:

%p select(t -> V[t] = t+1, [$1..N]);

%t Select[Range@200,(k=1;While[FreeQ[Mod[Table[k^5-j^5,{j,k-1}],#],0],k++];k)==#+1&] (* _Giorgos Kalogeropoulos_, May 14 2021 *)

%Y Cf. A205791.

%Y Subset of A005117.

%K nonn

%O 1,2

%A _Robert Israel_, May 14 2021