login
A344255
Number of partitions of n into 8 semiprime parts.
2
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 9, 8, 12, 12, 17, 16, 18, 18, 22, 25, 30, 29, 33, 36, 44, 45, 51, 54, 59, 63, 71, 78, 87, 90, 99, 106, 120, 124, 136, 147, 157, 166, 182, 199, 216, 223, 238, 259, 280, 298, 314
OFFSET
32,7
FORMULA
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} [Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021
CROSSREFS
Cf. A001222 (Omega), A001358.
Column k=8 of A344447.
Sequence in context: A226279 A344246 A344254 * A344256 A344257 A088931
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 12 2021
STATUS
approved