OFFSET
0,2
FORMULA
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A174002(d) ) * a(n-k).
MATHEMATICA
nmax = 26; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 4, 4], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 4, 4], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 09 2021
STATUS
approved