login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343995
Smallest m > 0 such that the triangular number m*(m+1)/2 is divisible by 2^n-1.
2
1, 2, 6, 5, 30, 27, 126, 50, 146, 186, 712, 90, 8190, 2666, 3472, 6425, 131070, 37449, 524286, 95325, 547624, 700074, 2677214, 184365, 540299, 11180714, 12870192, 8956040, 66682968, 349866, 2147483646, 210570380, 407645720, 2863377066, 483939976, 509033160, 56701272284, 45812722346
OFFSET
1,2
COMMENTS
a(n) = A011772(2^n-1).
For n >= 2, a(n) <= 2^n-2, with equality if 2^n-1 is a prime (Cf. A000043).
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..419 (terms 1..253 from David A. Corneth)
EXAMPLE
a(6) = 27 as the triangular number 27*(27 + 1)/2 = 378 is divisible by 2^6-1 = 63. - David A. Corneth, May 30 2021
MATHEMATICA
Table[Min[Most[m /. Solve[{(m*(m + 1)) == c*(2^(n + 1) - 2), c > 0, m > 0}, Integers] /. C[1] -> 0]], {n, 1, 50}] (* Vaclav Kotesovec, May 30 2021 *)
PROG
(PARI) a(n) = { my(d = divisors((2^n-1)*2)); res = oo; for(i = 1, (#d + 1)\2, if(gcd(d[i], d[#d + 1 - i])==1, c = lift(chinese(Mod(-1, d[i]), Mod(0, d[#d + 1 - i]))); process(c); c = lift(chinese(Mod(0, d[i]), Mod(-1, d[#d + 1 - i]))); process(c))); res}
process(c) = { if(c < res, if(c > 0, res = c))} \\ David A. Corneth, May 30 2021
(Python)
from sympy.ntheory.modular import crt
from sympy import factorint
from itertools import product
def A343995(n):
plist = [p**q for p, q in factorint(2*(2**n-1)).items()]
return min(k for k in (crt(plist, d)[0] for d in product([0, -1], repeat=len(plist))) if k > 0) # Chai Wah Wu, May 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 30 2021
STATUS
approved