login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343944
Total number of parts in all partitions of n into powers of 2: p1 <= p2 <= ... <= p_k such that p_i <= 1 + Sum_{j=1..i-1} p_j.
3
0, 1, 2, 5, 7, 12, 15, 29, 35, 50, 58, 86, 98, 128, 143, 225, 251, 318, 350, 453, 495, 603, 653, 846, 914, 1092, 1172, 1419, 1517, 1773, 1886, 2521, 2687, 3130, 3322, 3917, 4147, 4759, 5021, 5909, 6227, 7082, 7442, 8537, 8955, 10076, 10544, 12326, 12898, 14452
OFFSET
0,3
LINKS
EXAMPLE
a(5) = 12 = 5+4+3: [1,1,1,1,1], [1,1,1,2], [1,2,2].
a(6) = 15 = 6+5+4: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2].
a(7) = 29 = 7+6+5+4+4+3: [1,1,1,1,1,1,1], [1,1,1,1,1,2], [1,1,1,2,2], [1,2,2,2], [1,1,1,4], [1,2,4].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<0, 0, (p-> `if`(
p>n or p>n-p+1, 0, (h-> h+[0, h[1]])(b(n-p, i))))(2^i)+b(n, i-1)))
end:
a:= n-> b(n, ilog2(n))[2]:
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 0, {0, 0}, Function[p, If[p > n || p > n - p + 1, {0, 0}, Function[h, h + {0, h[[1]]}][b[n - p, i]]]][2^i] + b[n, i - 1]]];
a[n_] := b[n, Floor@Log2[n]][[2]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A080182 A001318 A024702 * A226084 A294861 A161664
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 04 2021
STATUS
approved