login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343820
Number of partitions of 2n into powers of 2: p1 <= p2 <= ... <= p_k such that p_i <= 1 + Sum_{j=1..i-1} p_j.
3
1, 1, 2, 3, 6, 8, 12, 15, 26, 32, 42, 50, 68, 80, 98, 113, 166, 192, 230, 262, 318, 360, 418, 468, 572, 640, 732, 812, 934, 1032, 1160, 1273, 1626, 1792, 2010, 2202, 2482, 2712, 3006, 3268, 3682, 4000, 4402, 4762, 5254, 5672, 6190, 6658, 7492, 8064, 8772, 9412
OFFSET
0,3
LINKS
FORMULA
a(n) is odd <=> n in { A000225 }.
a(2^(n-1)) = A002449(n).
EXAMPLE
a(2) = 2: [1,1,1,1], [1,1,2].
a(3) = 3: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2].
a(4) = 6: [1,1,1,1,1,1,1,1], [1,1,1,1,1,1,2], [1,1,1,1,2,2], [1,1,2,2,2], [1,1,1,1,4], [1,1,2,4].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, (p->
`if`(p>n or p>n-p+1, 0, b(n-p, i)))(2^i)+b(n, i-1)))
end:
a:= n-> b(2*n, ilog2(n)+1):
seq(a(n), n=0..80);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 0, 0, Function[p, If[p > n || p > n - p + 1, 0, b[n - p, i]]][2^i] + b[n, i - 1]]];
a[n_] := b[2n, BitLength[n] + 1];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 30 2021
STATUS
approved