login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343831
a(n) = denominator of (1/e) * Sum_{a_1>=1, a_2>=1, ... , a_n>=1} a_1 * a_2 * ... * a_n / (a_1 + a_2 + ... + a_n)!.
3
1, 3, 120, 2520, 51840, 2494800, 6227020800, 653837184000, 27360571392000, 30411275102208000, 51090942171709440000, 1846572624206069760000, 15511210043330985984000000, 1361108681302294020096000000, 8841761993739701954543616000000
OFFSET
1,2
REFERENCES
O. Furdui, Limits, Series and Fractional Part Integrals. Problems in Mathematical Analysis, Springer, New York, 2013. See Problem 3.114 and 3.118.
FORMULA
b(n) = (1/e) * Sum_{a_1>=1, a_2>=1, ... , a_n>=1} a_1 * a_2 * ... * a_n / (a_1 + a_2 + ... + a_n)! = Sum_{j=0..n} (-1)^(n+j-1) * binomial(n,j) * Sum_{k=0..n+j-1} (-1)^k/k! = Sum_{k=0..n-1} binomial(n-1,k)/(k+n)!.
a(n) = denominator of b(n).
EXAMPLE
1, 2/3, 31/120, 179/2520, 787/51840, 6631/2494800, 2456299/6227020800, ...
MATHEMATICA
a[n_] := Denominator @ Sum[Binomial[n - 1, k]/(k + n)!, {k, 0, n - 1}]; Array[a, 20] (* Amiram Eldar, May 01 2021 *)
PROG
(PARI) a(n) = denominator(sum(j=0, n, (-1)^(n+j-1)*binomial(n, j)*sum(k=0, n+j-1, (-1)^k/k!)));
(PARI) a(n) = denominator(sum(k=0, n-1, binomial(n-1, k)/(k+n)!));
CROSSREFS
Cf. A343830 (numerator), A343832.
Sequence in context: A316127 A317433 A214312 * A185554 A134230 A321109
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Apr 30 2021
STATUS
approved