login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A343790
Number of ordered partitions of an n-set without blocks of size 7.
6
1, 1, 3, 13, 75, 541, 4683, 47292, 545819, 7086973, 102242283, 1622530933, 28089498891, 526813752973, 10640325166227, 230258631645913, 5315029292965675, 130353994525735677, 3385061859378821547, 92787606222541942477, 2677254928352340708075, 81110818086045534369661
OFFSET
0,3
FORMULA
E.g.f.: 1 / (2 + x^7/7! - exp(x)).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=7, 0, a(n-j)*binomial(n, j)), j=1..n))
end:
seq(a(n), n=0..21); # Alois P. Heinz, Apr 29 2021
MATHEMATICA
nmax = 21; CoefficientList[Series[1/(2 + x^7/7! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 29 2021
STATUS
approved