login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343789
Number of ordered partitions of an n-set without blocks of size 6.
6
1, 1, 3, 13, 75, 541, 4682, 47279, 545611, 7083565, 102182883, 1621425829, 28067555607, 526349480593, 10629883138059, 230009622202373, 5308749619032571, 130186940173803053, 3380385112758108315, 92650130825921846941, 2673020491585091254035, 80974418589343644492805
OFFSET
0,3
FORMULA
E.g.f.: 1 / (2 + x^6/6! - exp(x)).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=6, 0, a(n-j)*binomial(n, j)), j=1..n))
end:
seq(a(n), n=0..21); # Alois P. Heinz, Apr 29 2021
MATHEMATICA
nmax = 21; CoefficientList[Series[1/(2 + x^6/6! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 29 2021
STATUS
approved