login
A343605
a(n) is the greatest number < n with the same sum of balanced ternary digits as n.
2
-2, -5, 0, 1, -14, -1, 2, 3, 6, 7, 4, 9, 10, -41, -4, 5, 8, 15, 16, 11, 18, 19, 12, 17, 20, 21, 24, 25, 22, 27, 28, 13, 26, 29, 30, 33, 34, 31, 36, 37, -122, -13, 14, 23, 42, 43, 32, 45, 46, 35, 44, 47, 48, 51, 52, 49, 54, 55, 38, 53, 56, 57, 60, 61, 58, 63
OFFSET
0,1
COMMENTS
This sequence can be extended to negative indexes by setting a(-n) = -A343604(n) for any n > 0.
LINKS
FORMULA
a(9*n) = 9*n - 2.
a(A174658(n+1)) = A174658(n) for any n > 0.
a(n) <= 0 iff n belongs to A003462 or to A007051.
a(A003462(k)) = -A007051(k + 1) for any k >= 0.
a(A007051(k)) = -A003462(k - 1) for any k > 0.
EXAMPLE
The first terms, in base 10 and in balanced ternary (where T denotes the digit -1), alongside A065363(n), are:
n a(n) bter(n) bter(a(n)) A065363(n)
-- ---- ------- ---------- ----------
0 -2 0 T1 0
1 -5 1 T11 1
2 0 1T 0 0
3 1 10 1 1
4 -14 11 T111 2
5 -1 1TT T -1
6 2 1T0 1T 0
7 3 1T1 10 1
8 6 10T 1T0 0
9 7 100 1T1 1
10 4 101 11 2
11 9 11T 100 1
12 10 110 101 2
PROG
(PARI) A065363(n) = { my (v=0, d); while (n, v+=d=centerlift(Mod(n, 3)); n=(n-d)\3); v }
a(n) = my (s=A065363(n)); forstep (k=n-1, -oo, -1, if (s==A065363(k), return (k)))
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Apr 22 2021
STATUS
approved