

A343597


Numbers divisible by a 7smooth composite number.


3



4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers divisible by at least one of 4, 6, 9, 10, 14, 15, 21, 25, 35, 49.
Exactly half of the first 10, first 100 and first 600 positive integers are divisible by a 7smooth composite number; the largest 7smooth divisor of the remaining numbers is 1, 2, 3, 5 or 7.
Intervals extending to hundreds of integers with exactly 50% membership of this sequence are far from rare, some notable examples being [3000, 3999], [8000, 8999], [20000, 20999], [21000, 21999] and [23000, 23999]. This reflects the asymptotic density of the corresponding set being close to 0.5, precisely 1847 / 3675 = 0.50258503... (and membership of the set has a periodic pattern). See A343598 for further information.


LINKS



FORMULA

{a(n)} = {k : k >= 1, 2 <= A014673(k) <= 7}, where A014673(k) = lpf(k/lpf(k)), where lpf(m) = A020639(m), the least prime factor of m.
For n >= 1, a(22164 + n) = 44100 + a(n).
For n < 22164, a(22164  n) = 44100  a(n).


EXAMPLE

33 = 11 * 3 has divisors 1, 3, 11, 33, of which only 33 is composite. 33 is not 7smooth, as its prime factors include 11, which is greater than 7. So 33 is not in the sequence.
52 = 13 * 2 * 2 is divisible by 4, which is composite and 7smooth, so 52 is in the sequence.


MATHEMATICA

Select[Range[130], Plus @@ IntegerExponent[#, {2, 3, 5, 7}] > 1 &] (* Amiram Eldar, May 04 2021 *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



