The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343401 Number of partitions of n into 3 parts [r,s,t] such that r < s < t where no part divides any larger part and at least 1 part divides n. 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 2, 4, 0, 7, 0, 9, 7, 6, 0, 17, 5, 8, 8, 18, 0, 28, 0, 20, 13, 13, 16, 44, 0, 13, 18, 46, 0, 50, 0, 36, 37, 18, 0, 77, 14, 45, 24, 47, 0, 71, 34, 78, 31, 24, 0, 134, 0, 24, 65, 74, 38, 96, 0, 68, 37, 108, 0, 174, 0, 31, 80, 76, 51 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,12
LINKS
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign(3 - c(n/j) - c(n/i) - c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j), where c(n) = ceiling(n) - floor(n).
EXAMPLE
a(12) = 2; [2,3,7], [3,4,5] (Not counted [1,1,10], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,2,8], [2,4,6], [2,5,5], [3,3,6], [4,4,4]).
MATHEMATICA
Table[Sum[Sum[Sign[3 - Ceiling[n/j] + Floor[n/j] - Ceiling[n/(n - i - j)] + Floor[n/(n - i - j)] - Ceiling[n/i] + Floor[n/i]] (Ceiling[i/j] - Floor[i/j]) (Ceiling[(n - i - j)/j] - Floor[(n - i - j)/j]) (Ceiling[(n - i - j)/i] - Floor[(n - i - j)/i]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 100}]
PROG
(PARI) c(n) = ceil(n)-floor(n)
a(n) = sum(j=1, floor(n/3), sum(i=j, floor((n-j)/2), sign(3-c(n/j)-c(n/i)-c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j))) \\ Felix Fröhlich, Apr 21 2021
CROSSREFS
Cf. A343246.
Sequence in context: A238158 A029906 A094907 * A226570 A158380 A051734
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 13 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 12:00 EDT 2024. Contains 373481 sequences. (Running on oeis4.)