The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343401 Number of partitions of n into 3 parts [r,s,t] such that r < s < t where no part divides any larger part and at least 1 part divides n. 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 2, 4, 0, 7, 0, 9, 7, 6, 0, 17, 5, 8, 8, 18, 0, 28, 0, 20, 13, 13, 16, 44, 0, 13, 18, 46, 0, 50, 0, 36, 37, 18, 0, 77, 14, 45, 24, 47, 0, 71, 34, 78, 31, 24, 0, 134, 0, 24, 65, 74, 38, 96, 0, 68, 37, 108, 0, 174, 0, 31, 80, 76, 51 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 LINKS Table of n, a(n) for n=1..77. Index entries for sequences related to partitions FORMULA a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign(3 - c(n/j) - c(n/i) - c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j), where c(n) = ceiling(n) - floor(n). EXAMPLE a(12) = 2; [2,3,7], [3,4,5] (Not counted [1,1,10], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,2,8], [2,4,6], [2,5,5], [3,3,6], [4,4,4]). MATHEMATICA Table[Sum[Sum[Sign[3 - Ceiling[n/j] + Floor[n/j] - Ceiling[n/(n - i - j)] + Floor[n/(n - i - j)] - Ceiling[n/i] + Floor[n/i]] (Ceiling[i/j] - Floor[i/j]) (Ceiling[(n - i - j)/j] - Floor[(n - i - j)/j]) (Ceiling[(n - i - j)/i] - Floor[(n - i - j)/i]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 100}] PROG (PARI) c(n) = ceil(n)-floor(n) a(n) = sum(j=1, floor(n/3), sum(i=j, floor((n-j)/2), sign(3-c(n/j)-c(n/i)-c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j))) \\ Felix Fröhlich, Apr 21 2021 CROSSREFS Cf. A343246. Sequence in context: A238158 A029906 A094907 * A226570 A158380 A051734 Adjacent sequences: A343398 A343399 A343400 * A343402 A343403 A343404 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Apr 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 12:00 EDT 2024. Contains 373481 sequences. (Running on oeis4.)