login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343111
Numbers having exactly 2 divisors of the form 8*k + 1, that is, numbers with exactly 1 divisor of the form 8*k + 1 other than 1.
8
9, 17, 18, 25, 27, 33, 34, 36, 41, 45, 49, 50, 51, 54, 57, 63, 65, 66, 68, 72, 73, 75, 82, 85, 89, 90, 97, 98, 100, 102, 105, 108, 113, 114, 117, 119, 121, 123, 125, 126, 129, 130, 132, 135, 136, 137, 144, 145, 146, 147, 150, 161, 164, 165, 169, 170, 175
OFFSET
1,1
LINKS
EXAMPLE
63 is a term since among the divisors of 63 (namely 1, 3, 7, 9, 21 and 63), the only divisors congruent to 1 modulo 8 are 1 and 9.
PROG
(PARI) res(n, a, b) = sumdiv(n, d, (d%a) == b)
isA343111(n) = (res(n, 8, 1) == 2)
CROSSREFS
Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), this sequence (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 2 in A188169.
A007519 is a subsequence.
Sequence in context: A134104 A124966 A224442 * A364540 A347250 A192049
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Apr 05 2021
STATUS
approved