The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342261 Irregular triangular array T(n,k) = m read by rows. Row n lists all solutions m < 3^n, where A340407(3^n*j - m) = n is true for all j > 0, sorted in ascending order. 3
 0, 1, 8, 2, 4, 5, 16, 13, 14, 22, 34, 38, 52, 74, 77, 20, 25, 40, 50, 88, 130, 146, 173, 185, 203, 209, 223, 229, 230, 238, 241, 130, 146, 173, 185, 203, 209, 223, 229, 230, 238, 241, 41, 61, 76, 104, 106, 121, 128, 157, 254, 266, 292, 311, 403, 412, 430, 445, 454, 493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Each row n has 2^(n-1) values. In all rows other than the first row of T(n,k), there are exactly 2^(n-2) numbers of the form 3*p + 1 and the same number of numbers of the form 3*q - 1. Each integer has a unique representation of the form 3^n*j - T(n,k). LINKS Table of n, a(n) for n=1..60. EXAMPLE Triangle T(n,k) begins: 0; 1, 8; 2, 4, 5, 16; 13, 14, 22, 34, 38, 52, 74, 77; PROG (MATLAB) function t = A342261 (max_row) maxtest = 10; d = A340407(maxtest*3^max_row); for row = 1:max_row m = 0; for k = 1:2^(row-1) test = d((1:maxtest)*(3^row)-m); while ~all(test == test(1))||(test(1) ~= row) m = m+1; test = d((1:maxtest)*(3^row)-m); end t(row, k) = m; t = t+1; end end end function d = A340407 (max_p) for p = 1:max_p s = 6*p -2; c = 0; while mod(s, 3) ~= 0 s = A342369( s ); if mod(s, 3) == 2 c = c+1; end end d(p) = c; end end function b = A342369( n ) if mod(n, 3) == 2 b = (2*n - 1)/3; else b = 2*n; end end CROSSREFS Cf. A340407. Sequence in context: A274211 A138499 A153387 * A010520 A169847 A285299 Adjacent sequences: A342258 A342259 A342260 * A342262 A342263 A342264 KEYWORD nonn,tabf AUTHOR Thomas Scheuerle, Mar 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 04:01 EDT 2023. Contains 365503 sequences. (Running on oeis4.)