login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} A323833(n,k) if A323833 is read as a triangle.
0

%I #16 Mar 05 2021 02:31:36

%S 0,1,1,-5,-8,61,130,-1385,-3680,50521,160816,-2702765,-10026368,

%T 199360981,844583440,-19391512145,-92369507840,2404879675441,

%U 12722897618176,-370371188237525,-2154662195222528,69348874393137901,440001333689382400,-15514534163557086905,-106615331831035289600,4087072509293123892361

%N a(n) = Sum_{k=0..floor(n/2)} A323833(n,k) if A323833 is read as a triangle.

%C Because A323833(n,n/2) = 0 for n even (if A323833 is read as a triangle), we also have a(n) = Sum_{k=0..ceiling((n-1)/2)} A323833(n,k).

%F a(n) = Sum_{k=0..floor(n/2)} A323833(n-k,k) if A323833 is read as a square array (by upwards antidiagonals).

%F a(2*n+1) = -A028296(n+1).

%F a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} binomial(n-k,i) * (-1)^(k+i) * A163747(k+i).

%e a(3) = -2 - 3 = -5.

%e a(4) = -5 - 3 = -8.

%e a(5) = 16 + 21 + 24 = 61.

%e a(6) = 61 + 45 + 24 = 130.

%e a(7) = -272 - 333 - 378 - 402 = -1385.

%o (PARI) {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ _Michael Somos_'s PARI program for A000111

%o c(n) = if(n==0, 0, (-1)^(n+floor(n/2))*b(n))

%o a(n) = sum(k=0, floor(n/2), sum(i=0, n-k, binomial(n-k,i)*(-1)^(k+i)*c(k+i)))

%Y Cf. A000111, A028296, A163747, A323833.

%K sign

%O 0,4

%A _Petros Hadjicostas_, Mar 04 2021