login
A342154
Number of partitions of n^5 into two positive squares.
1
0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 5, 3, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 18, 0, 0, 3, 0, 0, 0, 1, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 18, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 1, 0, 5, 3, 0, 0, 3, 0
OFFSET
0,6
COMMENTS
a(n) > 0 if and only if n is in A000404. - Robert Israel, Mar 03 2021
FORMULA
a(n) = A025426(A000584(n)).
EXAMPLE
2^5 = 32 = 4^2 + 4^2. So a(2) = 1.
5^5 = 3125 = 10^2 + 55^2 = 25^2 + 50^2 = 38^2 + 41^2. So a(5) = 3.
MAPLE
f:= proc(n) local x, y, S;
S:= map(t -> subs(t, [x, y]), [isolve(x^2+y^2=n^5)]);
nops(select(t -> t[1] >= t[2] and t[2] > 0, S))
end proc:
map(f, [$0..200]); # Robert Israel, Mar 03 2021
PROG
(PARI) a(n) = my(cnt=0, m=n^5); for(k=1, sqrt(m/2), l=m-k*k; if(l>0&&issquare(l), cnt++)); cnt;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 02 2021
STATUS
approved