The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342099 Product of first n tangent numbers. 1
 1, 1, 2, 32, 8704, 69074944, 24438162587648, 546639076930132901888, 1040668139730671025101058605056, 218400176068773166949459169210753567686656, 6353017630286823410670432558608528274164598967780769792 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..10. Eric Weisstein's World of Mathematics, Tangent Number. FORMULA a(n) = Product_{k=1..n} A000182(k). a(n) ~ c * 2^(n*(2*n+3)) * n^(n^2 + n/2 - 1/24) / (Pi^(n*(2*n+1)/2) * exp(n*(3*n+1)/2)), where c = 1.3336306469174300191610203408604845574627820502002809243182947395752927990... MAPLE b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) end: a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(2*n-1, 0)) end: seq(a(n), n=0..12); # Alois P. Heinz, Mar 05 2021 MATHEMATICA Table[Product[(-1)^k * (16^k - 4^k)*Zeta[1 - 2*k], {k, 1, n}], {n, 0, 12}] Table[Product[2*PolyGamma[2*k-1, 1/2]/Pi^(2*k), {k, 1, n}], {n, 0, 12}] FoldList[Times, 1, Table[(-1)^n * (16^n - 4^n)*Zeta[1 - 2*n], {n, 1, 12}]] PROG (Python) from math import prod from sympy import bernoulli def A342099(n): return abs(prod(((2-(2<<(m:=i<<1)))*bernoulli(m)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)