login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342099 Product of first n tangent numbers. 1
1, 1, 2, 32, 8704, 69074944, 24438162587648, 546639076930132901888, 1040668139730671025101058605056, 218400176068773166949459169210753567686656, 6353017630286823410670432558608528274164598967780769792 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Tangent Number.
FORMULA
a(n) = Product_{k=1..n} A000182(k).
a(n) ~ c * 2^(n*(2*n+3)) * n^(n^2 + n/2 - 1/24) / (Pi^(n*(2*n+1)/2) * exp(n*(3*n+1)/2)), where c = 1.3336306469174300191610203408604845574627820502002809243182947395752927990...
MAPLE
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(2*n-1, 0)) end:
seq(a(n), n=0..12); # Alois P. Heinz, Mar 05 2021
MATHEMATICA
Table[Product[(-1)^k * (16^k - 4^k)*Zeta[1 - 2*k], {k, 1, n}], {n, 0, 12}]
Table[Product[2*PolyGamma[2*k-1, 1/2]/Pi^(2*k), {k, 1, n}], {n, 0, 12}]
FoldList[Times, 1, Table[(-1)^n * (16^n - 4^n)*Zeta[1 - 2*n], {n, 1, 12}]]
PROG
(Python)
from math import prod
from sympy import bernoulli
def A342099(n): return abs(prod(((2-(2<<(m:=i<<1)))*bernoulli(m)<<m-2)//i for i in range(1, n+1))) # Chai Wah Wu, Apr 16 2023
CROSSREFS
Cf. A000182.
Sequence in context: A202629 A129349 A180127 * A091804 A012853 A128146
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 05 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)