login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes formed by the concatenation of exactly two consecutive composite numbers.
1

%I #60 Mar 04 2021 03:20:22

%S 89,5051,5657,6263,6869,8081,9091,9293,120121,186187,188189,200201,

%T 216217,242243,246247,252253,278279,300301,308309,318319,338339,

%U 342343,350351,362363,368369,390391,402403,410411,416417,426427,428429,440441,446447,450451,452453,470471,476477,482483

%N Primes formed by the concatenation of exactly two consecutive composite numbers.

%C When a prime is obtained by the concatenation of exactly two consecutive composite numbers, the first one always ends with 0, 2, 6, 8 while the second one ends respectively with 1, 3, 7, 9.

%C a(1) = 89 is also the smallest prime whose digits are composite (A051416).

%C a(n) has an even number of digits. If it would have an odd number of digits then it is like 99..99100..00 but that is composite. - _David A. Corneth_, Feb 27 2021

%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://primes.utm.edu/curios/page.php?curio_id=646">Prime Curios! 89</a>.

%e If (2,q) is the smallest term formed by the concatenation of 2 consecutive composite numbers with each q digits: (2,1) = a(1) = 89, (2,2) = a(2) = 5051, (2,3) = a(9) = 120121, (2,4) = 10021003, (2,5) = 1001010011, (2,6) = 100010100011.

%o (PARI) isc(c) = (c>1) && ! isprime(c);

%o isok(p) = {if (isprime(p), my(d=digits(p)); for (i=1, #d-1, my(b = fromdigits(vector(i, k, d[k]))); if (d[i+1], my(c = fromdigits(vector(#d-i, k, d[k+i]))); if (isc(b) && isc(c) && ((primepi(c) - primepi(b)) == c-b-1), return (1)); ); ); ); } \\ _Michel Marcus_, Feb 27 2021

%o (PARI) first(n) = { pc = 4; my(res = vector(n)); t = 0; forcomposite(c = 6, oo, nc = pc * 10^#digits(c) + c; if(isprime(nc), t++; res[t] = nc; if(t >= n, return(res) ) ); pc = c; ) } \\ _David A. Corneth_, Feb 27 2021

%o (PARI) is(n) = { my(d = digits(n)); if(#d % 2 == 1, return(0) ); fc = fromdigits(vector(#d \ 2, i, d[i])); lc = fromdigits(vector(#d \ 2, i, d[i+#d\2])); lc - fc == 1 && !isprime(fc) && !isprime(lc) && nextprime(fc)==nextprime(lc) && isprime(n) } \\ _David A. Corneth_, Feb 27 2021

%o (Python)

%o from sympy import isprime

%o def agento(lim):

%o digs, pow10 = 1, 10

%o while True:

%o for c2 in range(max(pow10//10+1, 3), pow10, 2):

%o if not isprime(c2) and not isprime(c2-1):

%o c1c2 = (c2-1)*pow10+c2

%o if c1c2 > lim: return

%o if isprime(c1c2): yield c1c2

%o digs, pow10 = digs+1, pow10*10

%o print([an for an in agento(482483)]) # _Michael S. Branicky_, Feb 27 2021

%Y Cf. A002808, A087341.

%Y Subsequence of A030458 and A121608.

%K nonn,base

%O 1,1

%A _Bernard Schott_, Feb 26 2021