login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342049
Primes formed by the concatenation of exactly two consecutive composite numbers.
1
89, 5051, 5657, 6263, 6869, 8081, 9091, 9293, 120121, 186187, 188189, 200201, 216217, 242243, 246247, 252253, 278279, 300301, 308309, 318319, 338339, 342343, 350351, 362363, 368369, 390391, 402403, 410411, 416417, 426427, 428429, 440441, 446447, 450451, 452453, 470471, 476477, 482483
OFFSET
1,1
COMMENTS
When a prime is obtained by the concatenation of exactly two consecutive composite numbers, the first one always ends with 0, 2, 6, 8 while the second one ends respectively with 1, 3, 7, 9.
a(1) = 89 is also the smallest prime whose digits are composite (A051416).
a(n) has an even number of digits. If it would have an odd number of digits then it is like 99..99100..00 but that is composite. - David A. Corneth, Feb 27 2021
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 89.
EXAMPLE
If (2,q) is the smallest term formed by the concatenation of 2 consecutive composite numbers with each q digits: (2,1) = a(1) = 89, (2,2) = a(2) = 5051, (2,3) = a(9) = 120121, (2,4) = 10021003, (2,5) = 1001010011, (2,6) = 100010100011.
PROG
(PARI) isc(c) = (c>1) && ! isprime(c);
isok(p) = {if (isprime(p), my(d=digits(p)); for (i=1, #d-1, my(b = fromdigits(vector(i, k, d[k]))); if (d[i+1], my(c = fromdigits(vector(#d-i, k, d[k+i]))); if (isc(b) && isc(c) && ((primepi(c) - primepi(b)) == c-b-1), return (1)); ); ); ); } \\ Michel Marcus, Feb 27 2021
(PARI) first(n) = { pc = 4; my(res = vector(n)); t = 0; forcomposite(c = 6, oo, nc = pc * 10^#digits(c) + c; if(isprime(nc), t++; res[t] = nc; if(t >= n, return(res) ) ); pc = c; ) } \\ David A. Corneth, Feb 27 2021
(PARI) is(n) = { my(d = digits(n)); if(#d % 2 == 1, return(0) ); fc = fromdigits(vector(#d \ 2, i, d[i])); lc = fromdigits(vector(#d \ 2, i, d[i+#d\2])); lc - fc == 1 && !isprime(fc) && !isprime(lc) && nextprime(fc)==nextprime(lc) && isprime(n) } \\ David A. Corneth, Feb 27 2021
(Python)
from sympy import isprime
def agento(lim):
digs, pow10 = 1, 10
while True:
for c2 in range(max(pow10//10+1, 3), pow10, 2):
if not isprime(c2) and not isprime(c2-1):
c1c2 = (c2-1)*pow10+c2
if c1c2 > lim: return
if isprime(c1c2): yield c1c2
digs, pow10 = digs+1, pow10*10
print([an for an in agento(482483)]) # Michael S. Branicky, Feb 27 2021
CROSSREFS
Subsequence of A030458 and A121608.
Sequence in context: A017805 A017752 A282478 * A264323 A100419 A328355
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Feb 26 2021
STATUS
approved