login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342038
a(n) is the index of the first occurrence of prime(n) in A307437.
2
1, 2, 3, 5, 6, 4, 9, 11, 7, 15, 18, 20, 21, 23, 13, 29, 30, 33, 35, 12, 39, 41, 22, 16, 25, 17, 53, 54, 28, 63, 65, 34, 69, 37, 75, 78, 81, 83, 43, 89, 45, 19, 32, 49, 99, 105, 111, 113, 38, 58, 119, 60, 125, 64, 131, 67, 135, 138, 70, 47, 73, 153, 31, 52, 79
OFFSET
2,2
COMMENTS
a(n) is the first k such that the smallest m such that C_(2k) is a subgroup of (Z/mZ)* is m = prime(n), where C_(2k) is the cyclic group of order 2k and (Z/mZ)* is the multiplicative group of integers modulo m.
a(n) is well-defined since A307437((p-1)/2) = p for odd primes p.
LINKS
EXAMPLE
For n = 7, prime(n) = 17. The first k such that: (i) C_(2k) is a subgroup of (Z/17Z)*; (ii) there is no m < 17 such that C_(2k) is a subgroup of (Z/mZ)* is k = 4, so a(7) = 4.
For n = 21, prime(n) = 73. The first k such that: (i) C_(2k) is a subgroup of (Z/73Z)*; (ii) there is no m < 73 such that C_(2k) is a subgroup of (Z/mZ)* is k = 12, so a(21) = 12.
PROG
(PARI) a(n) = if(n>=2, my(p=prime(n)); for(k=1, oo, if(A307437(k)==p, return(k)))) \\ see A307437 for its program
CROSSREFS
Sequence in context: A194900 A194051 A195610 * A082654 A072636 A191741
KEYWORD
nonn
AUTHOR
Jianing Song, Feb 26 2021
STATUS
approved