login
A341864
Least increasing sequence of primes a(n) == A020652(n) (mod A038567(n)).
1
3, 7, 11, 13, 19, 31, 37, 43, 59, 61, 71, 113, 149, 157, 179, 229, 251, 257, 283, 293, 311, 379, 389, 409, 419, 421, 431, 461, 463, 467, 479, 617, 673, 751, 829, 863, 919, 953, 1009, 1021, 1033, 1069, 1097, 1123, 1151, 1171, 1237, 1277, 1291, 1409, 1423, 1489, 1607, 1621, 1973, 1987, 2027, 2087
OFFSET
1,1
COMMENTS
A020652/A038567 is an enumeration of the fractions < 1 (in lowest terms) arranged by increasing denominator and then increasing numerator.
a(n) is the least prime > a(n-1) congruent to A020652(n) (mod A038567(n)).
LINKS
EXAMPLE
a(5) = 19 == A020652(5) = 3 (mod A038567(5) = 4) and is the least prime > a(4) = 13 with this property.
MAPLE
N:= 100: # for a(1)..a(N)
A:=Vector(N): A[1]:= 3: n:= 1:
for d from 3 while n < N do
for m from 1 to d-1 while n < N do
if igcd(m, d)=1 then
n:= n+1;
for k from ceil((A[n-1]+1 - m)/d) do
q:= d*k+m;
if isprime(q) then A[n]:= q; break fi
od
fi
od od:
convert(A, list);
CROSSREFS
Sequence in context: A091250 A186645 A077256 * A067542 A346156 A129748
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 22 2021
STATUS
approved