The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341587 E.g.f.: log(1 + log(1 - x))^2 / 2. 3
 1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS FORMULA a(n) = Sum_{k=2..n} |Stirling1(n, k) * Stirling1(k, 2)|. a(n) = Sum_{k=2..n} |Stirling1(n, k)| * (k-1)! * H(k-1), where H(k) is the k-th harmonic number. a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A003713(k) * A003713(n-k). a(n) = A052822(n) / 2. a(n) ~ sqrt(2*Pi) * log(n) * n^(n - 1/2) / (exp(1) - 1)^n * (1 + (gamma - log(exp(1) - 1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 15 2021 MATHEMATICA nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] & Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}] CROSSREFS Cf. A000254, A000558, A003713, A008275, A039814, A052822, A302547, A302548, A341588. Sequence in context: A083805 A181571 A231126 * A006387 A014481 A184266 Adjacent sequences:  A341584 A341585 A341586 * A341588 A341589 A341590 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Feb 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 21:11 EDT 2021. Contains 343990 sequences. (Running on oeis4.)