login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341578 a(n) is the minimum number of total votes needed for one party to win if there are n^2 voters divided into equal districts. 3
1, 3, 4, 8, 9, 14, 16, 24, 25, 33, 36, 45, 49, 60, 64, 80, 81, 95, 100, 117, 121, 138, 144, 165, 169, 189, 196, 224, 225, 247, 256, 288, 289, 315, 324, 350, 361, 390, 400, 429, 441, 473, 484, 528, 529, 564, 576, 624, 625, 663, 676, 728, 729, 770, 784, 825, 841, 885, 900, 943 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Comments from Jack W Grahl and Andrew Weimholt, Feb 26 2021: (Start):
This is a two-party election. The size d of each district must divide n^2, so there are n^2/d equal districts.
The districts are winner-takes-all, and tied districts go to neither candidate. For an even number of districts, it is enough to win half the districts and tie in one further district.
So for 5 districts of 5 votes each, one party could win with 3 votes in each of 3 districts, and 0 in all other districts, for a total of a(5) = 9 votes.
For 8 districts of size 8, 5 votes in each of 4 districts and 4 votes in a fifth district are enough, for a total of a(8) = 24 votes.
d need not equal n. For n=6, it is better to gerrymander the 36 votes into 3 districts with 12 votes each, and then a(6) = 14 = 7+7+0 votes are enough to win. (End)
This is related to the gerrymandering question. What is the asymptotic behavior of a(n)? - N. J. A. Sloane, Feb 20 2021. Answer from Don Reble, Feb 26 2020: The lower bound is [(n^2+1)/4 + n/2]; the upper bound is [n^2/4 + n]. Each bound is reached infinitely often. In general the best choice for d is not unique, since d and n/d give the same answer.
LINKS
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: Slides; Slides (an alternative source).
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
FORMULA
a(n) is the minimum value of {(floor(d/2)+1)*(floor(n^2/(2*d))+1) over all divisors d of n^2 AND (n/2+1)^2-1, if n is even}.
EXAMPLE
For a(2), divisors of 2^2 are 1, 2, 4:
d=1: (floor(1/2)+1)*(floor(2^2/(2*1))+1) = 1*3 = 3
d=3: (floor(2/2)+1)*(floor(2^2/(2*2))+1) = 2*2 = 4
d=9: (floor(4/2)+1)*(floor(2^2/(2*4))+1) = 3*1 = 3
OR
since n is even, ((2/2)+1)^2-1=3
Party A only needs 3 cells out of 4 to win a majority of districts.
For a(6), divisors of 6^2 are 1, 2, 3, 4, 6, 9, 12, 18, 36:
By symmetry we can ignore d = 9, 12, 18 and 36;
d=1: (floor(1/2)+1)*(floor(6^2/(2*1))+1) = 1*19 = 19
d=2: (floor(2/2)+1)*(floor(6^2/(2*2))+1) = 2*10 = 20
d=3: (floor(3/2)+1)*(floor(6^2/(2*3))+1) = 2*7 = 14
d=4: (floor(4/2)+1)*(floor(6^2/(2*4))+1) = 3*5 = 15
d=6: (floor(6/2)+1)*(floor(6^2/(2*6))+1) = 4*4 = 16
OR
since n is even, ((6/2)+1)^2-1=15
Party A only needs 14 cells out of 36 to win a majority of districts.
MATHEMATICA
Table[Min[Table[(Floor[d/2]+1)*(Floor[n^2/(2*d)]+1), {d, Divisors[n^2]}], If[EvenQ[n], (n/2+1)^2-1, Infinity]], {n, 60}](* Stefano Spezia, Feb 15 2021 *)
PROG
(Python)
from sympy import divisors
def A341578(n):
c = min((d//2+1)*(n**2//(2*d)+1) for d in divisors(n**2, generator=True) if d<=n)
return c if n % 2 else min(c, (n//2+1)**2-1) # Chai Wah Wu, Mar 05 2021
CROSSREFS
See A341721 for an analog where there are n voters, not n^2.
See A341319 for a variant.
See also A290323.
Sequence in context: A050035 A306901 A355477 * A046974 A177986 A186775
KEYWORD
nonn
AUTHOR
Sean Chorney, Feb 14 2021
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 26 2021.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:06 EST 2023. Contains 367696 sequences. (Running on oeis4.)