Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 15 2021 22:50:42
%S 1,2,3,3,4,5,4,5,6,9,5,6,9,8,7,6,9,8,7,10,15,7,10,15,12,25,18,11,8,7,
%T 10,15,12,25,16,27,9,8,7,10,15,12,27,18,25,10,15,12,25,18,27,14,11,16,
%U 21,11,14,21,20,35,30,49,24,45,50,13,12,25,18,27,16,11,20,21,14,35,36,45,13,22,33,28,55,42,77,40,63,70,121,60,17
%N Triangular array T(n,k) = A005940(1+A156552(n)+A156552(k)), read by rows, with n >= 1, 1 <= k <= n.
%C A341510 is the main entry for this dyadic function. See comments there.
%H Antti Karttunen, <a href="/A341511/b341511.txt">Table of n, a(n) for n = 1..10440; the first 144 rows of the triangle</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F T(n, k) = A341510(n, k).
%e The triangle begins as:
%e 1,
%e 2, 3,
%e 3, 4, 5,
%e 4, 5, 6, 9,
%e 5, 6, 9, 8, 7,
%e 6, 9, 8, 7, 10, 15,
%e 7, 10, 15, 12, 25, 18, 11,
%e 8, 7, 10, 15, 12, 25, 16, 27,
%e 9, 8, 7, 10, 15, 12, 27, 18, 25,
%e etc.
%o (PARI)
%o up_to = 105;
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
%o A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A341510sq(n,k) = A005940(1+A156552(n)+A156552(k));
%o A341511list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > #v, return(v)); v[i] = A341510sq(n,k))); (v); };
%o v341511 = A341511list(up_to);
%o A341511(n) = v341511[n];
%Y The lower triangular region of A341510 read by rows.
%Y Cf. A005940, A156552.
%Y Cf. A000027 (the left edge), A003961 (the right edge).
%K nonn,tabl
%O 1,2
%A _Antti Karttunen_, Feb 15 2021