login
A341277
Number of length-n binary mesosome-avoiding strings.
0
1, 2, 4, 8, 14, 24, 32, 42, 54, 68, 82, 98, 118, 140, 162, 186, 216, 248, 280, 314, 356, 400, 444, 490, 546, 604, 662, 722, 794, 868, 942, 1018, 1108, 1200, 1292, 1386, 1496, 1608, 1720, 1834, 1966, 2100, 2234, 2370, 2526, 2684, 2842, 3002, 3184, 3368, 3552
OFFSET
0,2
COMMENTS
A mesosome is a word of the form x x', where x' is a cyclic shift of x, different from x. A string is mesosome-avoiding if it has no subword (contiguous block) that is a mesosome.
LINKS
Robert Cummings, Jeffrey Shallit and Paul Staadecker, Mesosome Avoidance, arXiv:2107.13813 [cs.DM], 2021.
FORMULA
Let n = 4k + i for i = 0, 1, 2, 3 and n >= 5. Then:
a(4k ) = (4k^3 + 15k^2 + 41k - 12)/3;
a(4k + 1) = (4k^3 + 18k^2 + 50k )/3;
a(4k + 2) = (4k^3 + 21k^2 + 59k + 12)/3;
a(4k + 3) = (4k^3 + 24k^2 + 68k + 30)/3. [from 'Mesosome Avoidance', Theorem 2, eqn. (1), Georg Fischer, Nov 25 2022]
EXAMPLE
For n = 4 the only strings not counted are 0110 and 1001.
CROSSREFS
Sequence in context: A018153 A101687 A096461 * A049701 A005598 A290845
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Feb 08 2021
STATUS
approved