login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341073
Number of partitions of n into 4 distinct squarefree parts.
8
1, 1, 1, 1, 2, 4, 3, 2, 5, 7, 8, 7, 11, 13, 15, 13, 17, 20, 23, 21, 28, 33, 34, 32, 40, 44, 47, 44, 55, 63, 66, 62, 75, 84, 87, 81, 98, 110, 115, 109, 127, 144, 148, 140, 159, 180, 186, 177, 199, 220, 231, 217, 241, 264, 275, 262, 290, 317, 325, 314, 343, 376, 382, 368, 403
OFFSET
11,5
LINKS
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(numtheory[issqrfree](i), b(n-i, min(n-i, i-1), t-1), 0)))
end:
a:= n-> b(n$2, 4):
seq(a(n), n=11..75); # Alois P. Heinz, Feb 04 2021
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[SquareFreeQ[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
a[n_] := b[n, n, 4];
Table[a[n], {n, 11, 75}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 04 2021
STATUS
approved