login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095986
A card-arranging problem: number of permutations p_1, ..., p_n of 1, ..., n such that i + p_i is a square for every i.
5
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 4, 3, 2, 5, 15, 21, 66, 37, 51, 144, 263, 601, 1333, 2119, 2154, 2189, 3280, 12405, 55329, 160895, 588081, 849906, 1258119, 1233262, 2478647, 4305500, 17278636, 47424179, 153686631, 396952852, 1043844982
OFFSET
0,15
COMMENTS
Gardner attributes the problem (for the case n = 13) to David L. Silverman.
REFERENCES
M. Gardner, Mathematical Games column, Scientific American, Nov 1974.
M. Gardner, Mathematical Games column, Scientific American, Mar 1975.
M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 81.
FORMULA
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j is a square or not.
EXAMPLE
a(0) = 1: the empty permutation.
a(3) = 1: 321.
a(5) = 1: 32154.
a(8) = 1: 87654321.
a(9) = 1: 826543917.
MAPLE
b:= proc(s) option remember; (n-> `if`(n=0, 1, add(
`if`(issqr(n+j), b(s minus {j}), 0), j=s)))(nops(s))
end:
a:= n-> b({$1..n}):
seq(a(n), n=0..25); # Alois P. Heinz, Mar 03 2024
MATHEMATICA
nmax=45; a[n_]:=Permanent[Table[If[IntegerQ[Sqrt[i+j]], 1, 0], {i, n}, {j, n}]]; Join[{1}, Array[a, nmax]] (* Stefano Spezia, Mar 03 2024 *)
CROSSREFS
Cf. A006063 (for cubes), A010052, A073364.
Sequence in context: A329876 A128868 A341073 * A212637 A283273 A269599
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(32) and a(33) from John W. Layman, Jul 21 2004
a(34)-a(36) from Ray Chandler, Jul 26 2004
a(37)-a(45) from William Rex Marshall, Apr 18 2006
a(0)=1 prepended by Alois P. Heinz, Mar 03 2024
STATUS
approved