The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340888 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 4^(n-k-1) * a(k). 2
 1, 1, 8, 124, 3456, 150656, 9453056, 807373568, 90066059264, 12716049596416, 2216452086693888, 467465806422867968, 117332539562036035584, 34562989958399757647872, 11807922834511544081973248, 4630865359842075866336067584, 2066370767828213666946077425664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..16. FORMULA Sum_{n>=0} a(n) * x^n / (n!)^2 = 4 / (5 - BesselI(0,4*sqrt(x))). MATHEMATICA a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 4^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}] nmax = 16; CoefficientList[Series[4/(5 - BesselI[0, 4 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2 CROSSREFS Cf. A102221, A326324, A340886, A340887. Sequence in context: A069459 A254125 A024282 * A231638 A065082 A053058 Adjacent sequences: A340885 A340886 A340887 * A340889 A340890 A340891 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 18:47 EDT 2023. Contains 365828 sequences. (Running on oeis4.)